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Resumo

Novos avanços nos métodos de fabricação, como a impressão 3D, permitem a construção de novas

espumas metálicas adequadas para o melhoramento do desempenho de permutadores de calor. As

superfı́cies mı́nimas triplamente periódicas (SMTP) são ótimas candidatas à estrutura da espuma de

um permutador de calor, porque separam o espaço em dois canais diferentes que se interconectam

continuamente com uma área de superfı́cie mı́nima, promovendo o uso mı́nimo de material com uma

elevada transferência de calor. O presente trabalho recorre a simulações numéricas de escoamento in-

compressı́vel 3D, através de estruturas porosas periódicas, constituı́das por células cúbicas baseadas

nas topologias Schwarz-D (SD) e Schoen-Gyroid (G) com múltiplas porosidades, entre 60 e 100%.

Os resultados da simulação são obtidos cobrindo uma gama de números de Reynolds, desde es-

coamento laminar estacionário (regime de Darcy e Forchheimer moderado) até escoamento laminar

não-estacionário (regime forte de Forchheimer). Múltiplas simulações com volumes elementares rep-

resentativos (REVs) em diferentes posições, foram conduzidas para validar o cálculo de parâmetros

macroscópicos para modelos de meios porosos utilizando apenas uma célula cúbica periódica unitária

(apenas um REV). É obtida a localização da zona de transição para o regime laminar não-estacionário

em função da porosidade. É proposta uma correlação para o número de Nusselt para a superfı́cie

Schoen-Gyroid (G) em escoamento laminar estacionário, para um intervalo de porosidades e números

de Prandtl. Finalmente, a transferência de calor, a potência de bombagem e a eficiência das geome-

trias foram comparadas com o caso usual da placa plana, cobrindo o regime de escoamento laminar

não-estacionário.

Palavras-chave: meios porosos, permutadores de calor, superfı́cies mı́nimas triplamente

periódicas, mêcanica dos fluidos computacional, escoamento laminar
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Abstract

New advancements in manufacturing methods such as 3D printing, allow the construction and projection

of novel metallic foams suitable for the improvement of heat exchangers performance that outperform

those typically used. The Triply Periodic Minimal Surfaces (TPMS) are great candidates for the foam

structure because they separate the space into two different channels that continually interconnect with

a minimum surface area, promoting the minimum use of material with a high heat transfer. The present

work deals with the numerical simulations of 3D incompressible flow through periodic porous structures,

consisting of cubic cells based on the Schwarz-D (SD) and Schoen-Gyroid (G) topologies with multi-

ple porosities between 60 and 100%. Simulation results are obtained covering a range of Reynolds

numbers from laminar steady flow (Darcy and moderate Forchheimer regime) to laminar unsteady flow

(strong Forchheimer regime). Multiple Representative Elementary Volume (REV) simulations in different

positions were conducted to validate calculations of macroscopic parameters for porous media models

carried out employing a unit periodic cubic cell (single REV). Transition region location to a laminar un-

steady regime, as a function of porosity, is obtained. A correlation for the Nusselt number is proposed

for the Schoen-Gyroid (G) surface in laminar-steady flow, for a range of porosities and Prandtl numbers.

Finally, heat transfer, pumping power, and material efficiency were compared with the usual case of the

parallel flat-plate covering the laminar unsteady flow.

Keywords: porous media, heat exchanger, triply periodic minimal surface, CFD, laminar flow
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Chapter 1

Introduction

Novel manufacturing methods allow the construction of geometries in the most varied ways. The present

work is dedicated to a type of surfaces called Triply Periodic Minimal Surface (TPMS), and the objective

is to numerically study the flow and heat transfer on these geometries, comparing the performance with

other usual heat exchanger geometry, the parallel flat plate.

1.1 Motivation

Global energy consumption has been increasing every year, having a major impact on the demand for

equipment with the highest energy efficiency [1]. This kind of equipment efficiency is essential today

to fight the ever-growing energy consumption. Heat exchangers are one of the vital types of equip-

ment used in various industries, including automotive and aerospatial, chemical industry, oil and gas,

power generation, refrigeration, among others [2]. Combined with new advancements in manufacturing

methods such as additive manufacturing, building foams for the heat exchangers with an exact structure

(e.g., periodic) is becoming a viable option for the industry [3]. It is now possible to produce new heat ex-

changers that outperform those typically used. The TPMS geometries are great candidates for the foam

structure because they separate the space into two different channels that continually interconnect with

a minimum surface area, promoting the minimum use of material with a high flow mix and heat transfer

[4]. These TPMS geometries can be studied as a porous media [5]. Porous materials can be found in

everyday life, all solids and quasi-solids are porous to some extent, which gives a higher significance for

this work. As an example, porous structures for bone scaffolds are widely used in tissue engineering,

providing being beneficial to cell growth rate, and a TPMS surface named gyroid that is studied in this

work have demonstrated superior properties, and can be used for the structure of the bone scaffold [6].

As we can see, the study of the theory and characteristics intrinsic to the geometry itself as well as fluid

flow and heat transfer through them assumes great importance.

The advances in computational processing power, that has been growing every year, allows for more

precise numerical simulations leading to a better understanding of the physics behind the flow and heat

transfer in such geometries [7]. For that reason, Computational Fluid Dynamics (CFD) analysis is the tool
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of this work. The goal of this work and the focus throughout the document is to provide correlations and

results for TPMS geometries that can be useful for the industry to manufacture novel heat exchangers.

1.2 Topic Overview

The study of porous media started in the XIX century with Darcy experimental approach to studying

beds of sand. Nevertheless, the study of Darcy was limited by an upper limit of the validity of the flow

velocity [8]. Attempting to solve this issue and determining a more extensive equation, Forchheimer

proposed adding a quadratic term in the average velocity at high velocities as a mechanism to improve

Darcy’s expression [9]. Ergun [10] demonstrated the Forchheimer hypothesis experimentally and ex-

panded the equation with the introduction of the hydraulic radius model, which defines a characteristic

length of the porous media based on the void volume and surface area. Dybbs and Edwards [11] did a

major experimental study in porous media defining a Reynolds number with a characteristic pore length

and interstitial velocity and were able to distinguish between four different regimes in the Reynolds spec-

trum (Darcy, Inertial, Unsteady and Turbulent). The Local Volume-Averaging Method, which involves the

integration over a Representative Elementary Volume (REV), of the conservation equations, was intro-

duced by Whitaker [12]. Since these investigations, numerous applications dealing with heat and mass

transfer across a porous media are being improved, such as combustion systems, evaporators, filtration

systems, and heat exchangers. This work will deal with the latter.

Figure 1.1: Shell and tube heat exchanger (Left), Source: comsol.pt; Gyroid heat exchanger (Right)

Heat exchangers are equipment that allow the transfer of heat between fluids at different tempera-

tures. There are several classifications of heat exchangers, such as by type of construction or by flow

arrangement. By the geometry of the structure, heat exchangers fall in several categories, including shell

and tube, plates, and compact heat exchangers (Figure 1.1). About the classification of heat exchang-

ers by flow arrangement, there are three categories: parallel-flow, counter-flow, and cross-flow [13].

Because there are many important applications, heat exchangers research and development, it always

has put effort to achieve the best performance from this type of equipment based on two approaches.

The first one with the use of new fluids like the nanofluids, i.e., fluids enriched with nanoparticles in or-

der to increase the fluid thermal conductivity [14]. The second one is the focal point for this work, which

includes the study for unique heat exchanger surfaces - e.g., Triply Periodic Minimal Surfaces - through

heat transfer enhancement may be achieved [15].
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A minimal surface is a surface that is locally area-minimizing; that is, a small section has the low-

est possible area for a surface crossing the boundary of that section. The first description of minimal

surfaces started with Euler and Meusnier in the XVIII century. The catenoid geometry discovered by

the former and the helicoid by the latter [16]. Especially fascinating is that this kind of surface arises in

natural structures such as soap films, bone tissue, and butterfly wings [6, 17]. In 1885, Schwartz and

Neovius, described the first minimal surfaces that have a crystalline structure in the sense of repeating

themselves in three dimensions, in other words being triply periodic [18]. The first Triply Periodic Minimal

Surface include the Schwartz-D (SD), studied in this work. In 1970, the other TPMS studied in this work,

the Schoen-Gyroid (G), is obtained by an algorithm derived by Schoen [19].

1.3 Objectives

The main objective of this work is to cover details of the pore-scale flow and heat transfer through TPMS

to quantify physical parameters relevant for the design and performance evaluation of this type of surface

applied to heat exchangers. The focus of the work can be divided into the following steps:

• Develop geometries from mathematical well defined TPMS with various wall thicknesses, to set an

appropriate computational domain,

• Multiple simulations to study the influence of the Representative Elementary Volume (position and

size) on the accuracy of the numerical estimations,

• Estimation of the permeability coefficients of TPMSs with the Darcy-Forchheimer law, to use for

the prediction of transition region,

• Analyze the flow behavior of TPMSs in the unsteady regime,

• Develop a correlation that covers the inertial and Darcian region for various Prandtl and porosities,

• Heat exchanger design (heat transfer, pumping power, and material compactness), and identi-

fication of optimal minimal surfaces with focus on different flow regimes (covering laminar and

unsteady flow regimes).

1.4 Thesis Outline

In this first chapter, the topics of the current work are presented, history and literature review of the

subjects are summarized.

Chapter 2 provide the theoretical background regarding local volume averaging techniques, govern-

ing equations, and analytical flow models used on porous media. The theory of internal flow heat transfer

and heat exchangers relevant parameters are also presented.

Chapter 3 explains the procedure used to make the TPMSs and from them obtain the solid geome-

tries. Covers the numerical models implemented as well as the verification and validation process for

the multiple simulations performed.
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Chapter 4 presents the REV validity and procedure for the calculation of macroscopic parameters

(Section 4.1), permeability coefficients results and unsteady flow analysis (Section 4.2), correlations

obtained for the laminar-steady regime (Section 4.3), and results obtained of the heat transfer geometry

parameters (Section 4.4).

The final chapter briefly describes the accomplished conclusions and suggestions for future work in

this field of study.
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Chapter 2

Background

This chapter presents the most relevant theoretical concepts necessary to understand this work better.

In Section 2.1, the fundamentals and modeling of transport in porous media are introduced: volume

averaging, governing equations, and analytical flow models. Heat transfer in internal flow are introduced

in Section 2.2. The Section 2.3 presents the most important parameters for heat exchangers. Last

Section 2.4 presents the approaches used in the literature to analyse porous media.

2.1 Modeling transport in porous media

A simple definition of a porous media consists of a solid matrix with void spaces that may be interconnect

or not. The void volume may contain more than one phase, however, for simplicity, the focus will be

towards single-phase flow systems. The macroscopic parameter that characterizes the media is the

volumetric porosity defined by:

φ =
Vf
V

(2.1)

where V = Vf + Vs is the total volume of the media, Vf is the void (fluid) volume and Vs is the solid

volume.

The characteristic scale of the problem is the main aspect when considering the appropriate mathe-

matical model. Continuity, momentum transport, and energy equations can be used if a representative

number of pores is considered. To describe the system’s microscopic phenomena at a macroscopic

level (where quantities are measurable), a continuum approach may be applied. Kaviany [20] presented

a relation from which the representative different lengths present in a porous medium are approximately

governed by,

K
1
2 << p < L << W, (2.2)

K
1
2 is referred to as the Brinkman screening distance, which predicts the boundary layer thickness,

i.e., gives the order of magnitude over which the velocity disturbance decays, p is the particle/pore
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dimension, L is the size of a Representative Elementary Volume (REV) used to calculate macroscopic

averaged values of extensive quantities. Finally, W is the system dimension, usually much larger than

pore and REV size. The choice of the size of the REV is important to obtain meaningful values and relies

on the condition that a change in volume in any given position does not affect the averaged quantity, and

the REV size must be small enough to avoid fluctuations on the averaged quantity due to macroscopic

heterogeneity’s - Figure 2.1.

Figure 2.1: REV (Left), Source: [21]; REV definition (Right), Source: [22]

2.1.1 Volume Averaging

To arrive to the volume-average transport equations one must first define the volume-average theorem.

Following the analysis presented by Bear and Bachmat [23], let ψ be a quantity associated to the fluid

within the REV. There are two different averages to define. The volumetric phase average,

〈ψ〉 =
1

V

∫
Vf

ψdV, (2.3)

and the volumetric intrinsic phase average,

〈ψ〉f =
1

Vf

∫
Vf

ψdV, (2.4)

〈ψ〉f is the value of 〈ψ〉 in the fluid phase and is, by definition, zero in the solid phase. The former is

averaged over the entire domain and hence might be non-zero on the solid phase, while the latter is

taken with respect to the fluid domain only. Both operations are integrated only over the fluid phase

domain and may be related with porosity using the following equation:

〈ψ〉 = φ〈ψ〉f , (2.5)

Having defined the phase average over a REV of a quantity, the relation between the local value

inside the volume and the average value is given by introducing the concept of fluctuation. The value a

property has in a specific point can be described with the following equation:

〈ψ〉 = 〈ψ〉f + ψ̂, (2.6)
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where ψ̂ is the deviation from the intrinsic phase average in the REV and 〈ψ̂〉 = 0 by definition. In section

4.1, we will see that for a low Péclet number, the definition is not always sustained.

For further analysis of the balance equations, the theorem for the volume average of a divergence is

presented [24]:

〈∇ · ψ〉 = ∇ · 〈ψ〉+
1

V

∫
Asf

ψ · ~ndA, (2.7)

where ~n is the unit normal to the area Asf of the solid-fluid interface.

2.1.2 Volume-Averaged Governing Equations

The governing equations of fluid flow and heat transfer are the mathematical formulation of the conser-

vation law of physics. The principle of mass conservation, Newton’s second law of motion and the first

law of thermodynamics [25].

Continuity Equation

The differential continuity equation takes the form,

∂ρ

∂t
+∇ · (ρ~U) = 0, (2.8)

where ~U is the local velocity vector and ρ is the local fluid density. By volume-averaging the previous

equation and no-slip boundary condition at the walls we get,

∂〈ρ〉
∂t

+∇ · 〈ρ~U〉 = 0, (2.9)

Momentum Equation

The change of momentum in a fluid element follows the Newton’s second law,

~F = m · ~a, (2.10)

This equation can be divided in spatial components and the different surface forces that can be applied

in a fluid element, gravity force, pressure forces and viscous forces. In the case of a Newtonian fluid,

the viscous stresses are proportional to the rates of deformation. These equation are known as Navier-

Stokes equation, assuming constant fluid properties and incompressible flow, the equation is presented

as:

ρ
∂~U

∂t
+ ρ(∇ · ~U) · ~U = −∇P + µ∇2 · ~U + ρ~g, (2.11)
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with P being the absolute pressure, g the body force and µ the dynamic viscosity. By volume averaging

the equation (assuming porosity does not change in the averaging volume) is re-written as [26]:

ρ
∂〈~U〉
∂t

+ ρ〈∇ · ~U ~U〉 = −〈∇P 〉+ µ〈∇2 · ~U〉+ ρ~g, (2.12)

Using the decomposition 2.7 along with relations 2.5 and 2.6 it is possible to arrive after some algebra:

ρ
∂〈~U〉
∂t

+ ρ〈~U〉f∇· 〈~U〉f +
ρ

φ
∇· 〈~U ~U〉 = −∇(〈P 〉f ) +µ〈∇2 · ~U〉f + ρ~g+

1

V

∫
Asf

(−p̂+µ∇~U) ·~ndA, (2.13)

Ruth and Ma [27] concluded that the third term on the left hand side of 2.13 may be relevant for

macroscopic heterogenities or changes in porosity, and is associated with the hydrodynamic dispersion.

In this work, the porosity is assumed to be constant and the term can be neglected.

Energy Equation

The first law of thermodynamics expresses that the rate of change of energy in a fluid element is equal

to the sum of the net of heat exchanged and the net of work applied,

dE = dQ+ dW, (2.14)

The volume-averaged macroscopic energy equations are obtained for the solid and fluid phases from

the work of Kuwahara et al. [28]. For the fluid and solid phase we have:

φρfcp

[
∂〈T 〉f

∂t
+ 〈~U〉f · ∇〈T 〉f

]
= ∇ ·

[
φκf∇〈T 〉f +

1

V

∫
Asf

κfT · ~ndA− ρfcp〈T̂ Û〉

]
+

1

V

∫
Asf

κfT ·~ndA,

(2.15)

(1− φ)ρsc
∂〈T 〉s

∂t
= ∇ ·

[
(1− φ)κs∇〈T 〉s −

1

V

∫
Asf

κsT · ~ndA

]
− 1

V

∫
Asf

κsT · ~ndA, (2.16)

where the subscripts s and f denote the solid and fluid phase respectively, c is the solid specific heat,

cp is the fluid specific heat at constant pressure and k is the thermal conductivity. This two-equations

model can be re-arranged, and be presented as follows:

φρfcp

[
∂〈T 〉f

∂t
+ 〈~U〉f · ∇〈T 〉f

]
= ∇ · (k̄eff,f · ∇〈T 〉f ) + hsfasf (〈T 〉s − 〈T 〉f ), (2.17)

(1− φ)ρsc
∂〈T 〉s

∂t
= ∇ · (k̄eff,s · ∇〈T 〉s) + hsfasf (〈T 〉s − 〈T 〉f ), (2.18)

where k̄eff,f and k̄eff,s are the effective thermal conductivity tensors of the fluid and solid phase, re-
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spectively, asf = Asf/V is the specific surface area, and hsf is the interfacial convective heat transfer

coefficient.

The interfacial convective heat transfer coefficient hsf is calculated considering the volume averaged

temperatures rather than the bulk mean temperatures of the fluid phase as it is usual for internal flows:

hsf =

1
v

∫
Asf

κfT · ~ndA
〈T 〉s − 〈T 〉f

, (2.19)

The temperature of the fluid, averaged in the space occupied by the fluid,

〈T 〉f =
1

Vf

∫
Vf

TdV, (2.20)

2.1.3 Analytical Flow Models

For porous media, there is no consensus among authors on either the velocity or characteristic length

for defining Reynolds number. Several authors have modified Re for incorporating structural features to

better characterize the flow inside the medium. Due to a lack of consensus, it is difficult to choose a Re

to compare and validate results.

In this work, four different definitions for the Re are used in different sections, combining two char-

acteristic lengths with two velocities. The length of the REV L, and the characteristic pore lengths

(hydraulic diameter Dh) are the two characteristic lengths. The Darcian velocity uDa (velocity before the

entry in the porous media), and the volume axial interstitial pore velocity average 〈u〉 (pore velocity), are

the two velocities used to define the Re. Following the work of several authors [11, 29] the hydraulic

diameter used in this work is defined by:

Dh =
4φ

asf
, (2.21)

The first Re used in the work, Section 4.1, is based on the Darcian velocity and length of the REV. Is

used to compare results between different surfaces and geometries with the same imposed mass flow

rate:

ReDa,L =
ρuDaL

µ
, (2.22)

The Re based on the pore velocity and length of the REV depends only of the flow inside the pore

because the length of the REV is the same for all geometries throughout the work. In Section 4.2 the

sentence above is demonstrated with the results obtained for the transition points. Is also used in the

correlation of Section 4.3:

Rep,L =
ρ〈u〉L
µ

, (2.23)

Another Re is based on the Darcian velocity and hydraulic diameter (equation 2.24). Is the Re less

used in this work because has a similar behavior that the Re that is shown below (equation 2.25), that is
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the main Re used in the literature of porous media.

ReDa,Dh
=
ρuDaDh

µ
, (2.24)

According to Dybbs and Edwards [11] there are four flow regimes based on the pore and hydraulic

diameter Reynolds number:

Rep,Dh
=
ρ〈u〉Dh

µ
, (2.25)

• Rep,Dh
< 1, Darcy or creeping regime - Laminar steady,

• 1− 10 < Rep,Dh
< 150, moderate Forchheimer (or inertial) regime - Laminar steady,

• 150 < Rep,Dh
< 300, strong Forchheimer regime - Laminar unsteady,

• Rep,Dh
> 300, unsteady chaotic - Turbulent.

For the laminar steady and laminar unsteady regime, the most studied regime and on the scope of this

work, the pressure drop can be calculated using two equations: Darcy’s law and the Darcy-Forchheimer

law.

Darcy Flow Model

Henry Darcy in his experimental work with respect to groundwater flow has great importance, and his

work led to the description of an experimental law [8]. The steady-state unidirectional flow experiments

through a uniform bed indicated that the flow rate was proportional to the pressure gradient and can be

expressed by Darcy’s law:

(
dp

dx

)
=

1

k1
µuDa, (2.26)

with k1 being the medium permeability given by a second-order tensor if the medium is anisotropic or

by a constant if the medium is isotropic, which is the scope of this work. This value accounts for the

ability of the fluid to pass through the medium. It is possible to derive Darcy’s law from the Navier-Stokes

equations provided that the inertial and time-dependent effects are neglected [30]. Darcy’s law is valid

in the creeping flow regime (Re << 1) and Re = 1 is an upper limit of validity for the Darcy law. Higher

velocity flow regimes imply a need for a different relation for pressure drop and superficial velocity (Dar-

cian velocity).

Forchheimer Flow Model

With the departure from the low velocities regime, the inertial forces cannot be neglected, and the

form drag has to be considered as it is of the same order as the friction drag. Hazen [31] first proposed

modifications to include the effects of temperature on viscous effects. However, it was Forchheimer in
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1901 [9] that predicted that a non-linear term would have to be added. The non-linear term added results

in a modification of Darcy’s law:

(
dp

dx

)
=

1

k1
µuDa +

ρ

k2
u2Da, (2.27)

where k1 is Darcian permeability parameter defined previously, and k2 are referred to as non-Darcian

permeability parameter. The Darcy-Forchheimer law in the form of 2.27 is the general form of the expres-

sion, and several authors have been working on ways to complement it and proposing new equations

[32–34]. With the Darcy-Forchheimer law, the complete laminar regime is covered until Re = 300. Al-

though it is accepted that for steady-unsteady transition, Retr is around 150, can deviate from this value

depending on the geometry, and the transition can be gradual and not a well-defined point [35]. This is

studied later in work on Section 4.2.

Heat Transfer Foam Correlations

Kuwahara et al. [28], using the constant wall temperature boundary condition, which is used in

this work, performed multiple simulations in staggered arrangements of square rods. The range of the

parametric study is for porosities between 0.36 < φ < 0.96, Re numbers 3× 10−3 < ReDa,Dh
< 5× 103

and Pr numbers 10× 10−2 < Pr < 10× 102. Their heat transfer data were fitted by the correlation given

by:

NuDh,K =

(
1 +

4(1− φ)

φ

)
+

1

2
(1− φ)1/2Re0.6Da,Dh

Pr1.3, (2.28)

Gamrat et al. [36] reported simulations with constant wall temperature and found that their predictions

were not in agreement with those of Kuwahara et al. [28]. The correlation obtained was the following:

NuDh,G = 3.02(1− φ)0.278e2.54(1−φ) + ((1− φ)1.093 + 0.357)Re0.5Da,Dh
Pr0.3, (2.29)

2.2 Fully Developed Internal Flow

For an internal flow we must be concerned with the existence of entrance and fully developed regions.

As a result of the development of the hydrodynamic and thermal boundary layers, four type of laminar

flows occur: fully developed, hydrodynamically developing, thermally developing, and simultaneously

developing. The former is the scope of this work, and the term fully developed flow refers to fluid flow

in which both the velocity profile and temperature profile are fully developed (i.e., hydrodynamically and

thermally developed flow) [37].

The hydrodynamic condition in the fully developed region is given by 2.30a. In heat transfer, the

temperature is continuously changing with x, and it would seem that a fully developed condition could

never be reached. A dimensionless form of the temperature is given to overcome that, 2.30b.
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(
∂u

∂x

)
= 0 (2.30a)

∂

∂x

[
Ts(x)− T (x, y, z)

Ts(x)− Tm(x)

]
= 0 (2.30b)

where Tm(x) is the temperature mass flow average over the cross-section area (definition 4.4), Ts is the

solid temperature, and T (x, y, z) is the temperature in a point.

The pressure drop needed to sustain an internal flow is essential, as it is directly related to the

pump or fan power requirements. It is convenient to work with the Moody friction factor, which is a

dimensionless parameter defined from the Darcy–Weisbach equation [38]:

f =
2

ρ

Dh

u2m

∆P

L
, (2.31)

where ∆P is the pressure drop across a distance L of porous media.

It is also important to introduce parameters that help understand the heat transfer phenomena when

the internal flow is subjected to heat boundary conditions, i.e, having a constant heat flux applied to

or an imposed temperature on the wall of the porous media. The wall conductivity κs is high enough,

compared to the fluid conductivity, to be considered infinite according to Shah and London [39], and

hence the proper boundary condition to use in this work is constant wall temperature.

Energy balance applied to the porous media can be related to the difference in temperatures at the

REV inlet and outlet to arrive to the heat transfer coefficient. Considering the flow inside the pore of

Figure 2.2, moving at a constant flow rate , and convection heat transfer occurring at the inner surface.

The differential control volume has a length dx, and expressing the rate of convection heat transfer to

the differential element as dqconv = q′′sPdx, where P is the surface perimeter. The energy balance over

an entire REV is given by:

qconv = ṁcp(Tm,o − Tm,i) + qcond, (2.32)

Figure 2.2: Control volume for energy balance in a REV, source: [13]

where qcond can be neglected for a higher Péclet number (discussed later in Section 4.1), and the first

term of the right hand side is the thermal energy advection between the inlet and outlet. In this work the
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constant surface temperature is applied, and the expression for the average heat transfer coefficient is

given by,

hsf =
qconv

Asf (Ts − 〈T 〉)
, (2.33)

In heat transfer, the Prandtl number (Pr) quantifies the relation between momentum and heat diffu-

sivity allowing a comparison between the two different boundary layers growth and it is defined as:

Pr =
cpµ

κf
, (2.34)

In terms of evaluating the heat transfer, the Nusselt number is one of the most important parameters.

It is defined as the ratio between heat transferred by convection to conduction across a fluid section.

NuDh
=
hsfDh

κf
, (2.35)

The Nusselt number quantifies the amount of heat transfer, so a higher Nusselt number symbolizes an

enhanced heat transfer by convection. There are multiple correlations to calculate Nu depending on

the nature of the flow, although there is none applied to the case of minimal surfaces. Correlations for

porous media foams are presented in the Section above 2.1.3. One objective of this work is to compute

the TPMS Nusselt number and compare with the parallel flat plate.

Parallel Flat Plate

Laminar flow and heat transfer in parallel plate ducts are described in this section. The parallel

plates have been analyzed in great detail by many authors [39–41]. The parallel plate geometry is a

limiting geometry for the family of rectangular ducts and it forms an upper bound for fluid friction and

heat transfer. Since these geometries are widely used in fluid flow and heat exchangers, the detailed

analytical results for laminar flow and heat transfer for parallel plates are described below. The friction

factor is given,

f =
96

ReDh

, (2.36)

Nusselt number is constant, and given for practical calculations and comparison,

NuDh,Tm
= 7.54, (2.37)

This value is calculated considering the temperature mass flow averaged Tm. In this work, the Nusselt is

calculated with the temperature volume average 〈T 〉, for a proper comparison with the results obtained

for the TPMSs. For the parallel plate, the Nu value is slightly different from the above,

NuDh,〈T 〉 = 9.26, (2.38)
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2.3 Heat Exchangers

A heat exchanger is a device that is used for the transfer of thermal energy between two or more fluids,

between a solid surface and a fluid, at differing temperatures and in thermal contact. In most heat

exchangers, the fluids are separated by a heat transfer surface, and ideally, they do not mix. The special

case of Figure 2.3 involves a counter-flow heat exchanger for which the hot fluid has a heat capacity

rate much larger than that of the cold fluid, (Ch >> Cc, C = ṁcp). The heat exchanger is studied as an

internal flow with constant wall temperature.

Figure 2.3: Counter-flow heat exchanger (Left), Source: [13]; Condition for constant wall temperature
(Right), Source: [13]

Considering the fluid outlet temperatures or heat transfer rate as dependent variables, they are re-

lated to multiple independent parameters. Different methods for design and analysis of heat exchangers

are available. However, this work deal with the ε − NTU method , and the most important parameters

to characterize this method are presented.

The exchanger effectiveness ε is an efficiency factor. It is a ratio of the actual heat transfer rate

from the hot fluid to the cold fluid in a given heat exchanger of any flow arrangement to the maximum

possible heat transfer rate qmax thermodynamically permitted. The qmax is obtained in a counter-flow

heat exchanger of infinite surface area.

ε =
q

qmax
, (2.39)

Equation 2.39 can be related with the fluid outlet and inlet temperature. Considering the case of Figure

2.3(b), the equation can be simplified to involve only one fluid:

ε =
Ti,c − To,c
Ti,c − Ts

, (2.40)

where Ti,c and To,c are the cold fluid inlet and outlet bulk temperature, respectively.

The number of transfer units (NTU) is a dimensionless parameter that is widely used for heat ex-

changer analysis [42] and is defined as:
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NTU =
hsfAsf
ṁcp

, (2.41)

Finally, the relation between ε and NTU for constant wall temperature is given by the expression:

ε = 1− exp(−NTU), (2.42)

The ε−NTU method approach for heat exchanger analysis provide no information concerning con-

ditions within the exchanger. Although flow and temperature variations within a heat exchanger may be

determined using commercial CFD (computational fluid dynamic) computer simulations.

2.4 Numerical method

Numerical simulations in porous foams might be divided into two branches, the ideal periodic simulations

where one admits fully developed flow and simulates a REV with periodic conditions, and random foams

[43]. Different numerical methods can be implemented to solve the flow field within the domain. Both

Lattice-Boltzman [44], and Finite Volume Method (FVM) have been used, with the latter being discussed

in further detail in the next chapter.

Krishnan [45] studied the laminar flow and heat transfer in a periodic open-cell structure solving all the

spatial and temporal scales with Direct Numerical Simulation (DNS). The results compare reasonably

well with the existing experimental models for higher porosities.

Diani et al. [46] simulated copper foams obtained from CT scan with the same porosity and different

pore densities for the purpose of comparing the pressure drop and convective heat transfer with exper-

imental results of the same foams and validate the CFD results for future work. They found that the

pressure gradient varies with the velocity squared and higher pore densities equate to a bigger pressure

drop since pores are smaller and the specific area is higher.

Della Torre et al. [47] simulated flow with real and ideal geometries covering laminar and turbulent

regimes. It is noted that the pressure gradient as a function of Rep,Dh
is quadratic in both laminar

and turbulent regimes, however, the viscous and inertial coefficients are distinct due to turbulence. To

assess the influence of porosity and pore size, geometrical transformations were carried to modify the

original foam. Permeability of the foam is found to increase exponentially with porosity while form drag

decreases linearly.

Parthasarathy et al. [48] used CT scans to simulate pore-level flow examining pressure drop and

tortuosity proposing a new Ergun type correlation based on the studied foams by adapting the viscous

and inertial coefficients. Ruth and Ma [27] as already noticed that the inertial contribution is related to

flow tortuosity.
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Chapter 3

Implementation

This chapter is divided into three sections. It starts by describing the creation of the CAD model and

how to obtain a TPMS, which is then imported into the CFD software. The following section describes

the numerical models used in terms of meshing and physics. Finally, it presents the verification and

validation process of the chosen models.

3.1 Geometry Creation

The first step of this work consists in creating the domain of the triply periodic minimal surfaces to

perform the simulations.

Minimal surface structures are designed using MathMod software. The minimal surface representa-

tion of the Schwartz-D and Schoen-Gyroid, are approximated by the following nodal equations (several

authors used the same approach [6, 49, 50]):

G : cos(X)sin(Y ) + cos(Y )sin(Z) + cos(Z)sin(X)− n = 0, (3.1)

SD : cos(X)cos(Y )cos(z)− sin(X)sin(Y )sin(Z)− n = 0, (3.2)

where X = 2πx/L, Y = 2πy/L , and Z = 2πz/L. The parameter L decides the length of the cube

in which the unit is located. The parameter n is introduced to create a solid surface wall with a homo-

geneous thickness, the surface are offset in the perpendicular direction to the surface normal vectors.

When n = 0 the surface divides the space into two equal domains and approximates very well a truly

minimal surface. A distinct advantage of using mathematical expressions to define these surfaces is

that a desired number of parameters can be assigned to the model, so that a subsequent architecture

optimization for porous materials study can be carried out with relative ease.

The minimal surfaces obtained with the software for a single unit cell are shown in Figure 3.1. The

files are saved in stl format and can be processed in CAD software to obtain the desired geometry

domain.
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Figure 3.1: Surfaces created with MathMod ; Gyroid (left), Schwartz-D (right).

The stl files of the surfaces are then imported into the CAD software SolidWorks to create the ge-

ometry of the fluid domain [51]. Finally, the fluid domain is transferred onto the CFD software to perform

the simulation.

3.2 Numerical Model

Star-CCM+® [52] was the software used to create the domain of the porous media and run the numerical

analysis. Comprises several packages with the capability to solve problems related to fluid flow, heat

transfer as well as solid mechanics, therefore is a good choice for the current work and it will be used

throughout the whole study for pre-processing, solving and post-processing.

3.2.1 Pre-Processing

First, the numerical domain was imported, and to preserve the flow a creation of multiple periodic inter-

faces in the fluid domain boundaries is necessary. The periodic interface between the inlet and outlet is

then specified as a fully developed interface in which one period of the geometry is treated with the fully

developed flow conditions, both hydrodynamic and thermal. Mass flow rate and bulk inflow temperature

(293 K) are specified in the inlet. Another two periodic interfaces are defined in the boundaries normal

to the y and z-axis with the symmetry condition. The solution that is obtained with a symmetry plane

boundary is identical to the solution that would be obtained by mirroring the mesh about the symme-

try plane. That together with the constant temperature condition defined in the wall boundary (328K)

provide all the necessary extra equations required to close the system of equations.

The domain is discretized by the mesh construction and the software has the options to generate

various types of meshes: Polyhedral, Tetrahedral, Trimmer, Extruder, and Prism Layer. A polyhedral

cell mesh is used in this work since contains fewer cells for the same surface compared to tetrahedral

and it is characterized for its stability and accuracy [53]. Trimmer is one that has minimal cell skewness

and particularly useful for external aerodynamic flows given its ability to be refined in the wake region

[54]. Extruder is typically used for inlet and outlet boundaries. It was also added to the mesh generation

the prism layer. It generates orthogonal prismatic cells near wall surfaces, increasing the accuracy of
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the solution in the near wall flow, making it a crucial tool to study heat transfer and boundary layer

phenomena [55].

Regarding the physical model, the following assumptions were taken into account:

• Steady / Implicit unsteady, depending on the simulation,

• Three dimensional,

• Constant properties (ρ, µ, cp and κf ),

• Laminar,

• Segregated flow,

• Segregated fluid energy,

3.2.2 Solving

The governing differential equations need to be solved, and for that the equations are defined in terms

of a general property ψ, allowing the definition of a transport equation of this quantity:

∂ρψ

∂t
+ div(ρψ~U) = div(Γ∇ψ) + Sψ, (3.3)

where the first term represents the rate of change of the quantity in the fluid element, the second term

represents the net rate of the quantity flow, which means the convective flux. On the right side of

the equation, the first term represents the diffusion rate and the final term represents a source term.

Equation is then integrated over a control volume, on which the Gauss’s divergence theorem is applied

to the convective and diffusive terms resulting in:

∂

∂t

∫
V

ρψdV +

∮
A

ρψ~UdA =

∮
A

Γ∇ψdA+

∫
V

SψdV, (3.4)

The software solves discretised equations, using the Finite Volume Method (FVM) [56]. Algebraic

relations are derived and that these, as approximations, will inherently conduce to error, the residual. In

the discrete form the equation has the form of:

∂

∂t
(ρψV )0 +

∑
f

ρψ(~U · ~a)f =
∑
f

(Γ∇ψ · ~a)f + (SψV )0, (3.5)

The convective term is computed with a second-order upwind scheme. This scheme has high stability

and second-order accuracy. The diffusive term is computed with the second-order central differences

scheme. The transient term, which is zero during a steady-state solution, is approximated by a first-order

temporal scheme that uses both the current time level and the previous one. The implicit solver is used.

The segregated flow model along with the SIMPLE algorithm (Semi-Implicit Method Pressure Linked

Equations) is used to numerically solve the discretized equations in the form presented above. The

steps of the algorithm procedure, in each iteration, implemented in the simulation, are summarized as

follows:
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• Boundary conditions input;

• Solving the discretised momentum equations to compute intermediate velocity field, u∗, v∗, w∗;

• Solving of pressure correction equation to obtain, p′;

• Update the pressure field as pn+1 = pn + αp′ with α being the pressure under-relaxation factor;

• Calculate u∗, v∗, w∗ from the intermediate values with the velocity correction formulas;

• Calculate residual and test convergence;

• If convergence is not obtained, iterate again from point 2 with the pressure field equal to the one

of the last iteration.

3.3 Verification and Validation

Wrong decisions based on CFD results can compromise projects, and have multiple consequences

including wasting money, time and effort, and at the worst failure of components. To assess the level

of confidence and quality of the numerical results, it is necessary for rigorous methods to measure the

error and uncertainty. For that, the concepts of verification and validation have become methods that,

nowadays, always go along with computational simulations.

The AIAA guide for verification and validation has had an important effect on the definition of these

terms [57]. Roache [58] described validation as ”solving the equations right”, meaning that the errors

are not due to lack of knowledge but instead by discretization errors, roundoff, or iterative convergence.

Throughout all the simulations performed in this work, care was taken with the convergence of the

simulation, watching the evolution of the residuals, setting a condition for them to drop two orders of

magnitude per time step in the unsteady simulations. For the steady simulations, the convergence crite-

ria were set for a minimum of 10−5. Besides, variables of interest, such as the friction factor and Nusselt

number were monitored to ensure convergence to average constant value - Figure 3.3. Validation, on

the other hand, accesses whether the model used is an accurate representation of the real world. Was

defined as ”Solving the right equations” and the process quantifies the uncertainty. Its sources stem from

inaccuracies due to an approximated geometry, material properties or boundary conditions as well as

physical model uncertainty, as a result of inadequate representation of physical processes such as tur-

bulence or simplifying hypothesis(e.g. steady flow, incompressible flow). It then requires highly accurate

experimental measurements to validate a model.

To perform the verification, a grid independence study was executed on a Gyroid REV with a char-

acteristic length of L = 7mm and constant wall temperature is applied. For that reason, the simulations

are only performed for the cold fluid domain 3.2. The geometry was designed to have a total maximum

porosity of 100%. In order to evaluate grid convergence, a group of six meshes was evaluated. The

mesh base sizes, which can be consulted on Table 3.1, start at 0.6mm and was further refined to an end

base size of 0.1mm. All of the meshes were considered with polyhedral mesh and prism layer cells are

added in the last meshes. Regarding the solid surface wall the no-slip condition was assumed.
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Figure 3.2: Hot, cold and solid domain (Left); Cold domain (Right).

Fluid properties for the verification were: ρ = 1kg/m3, µ = 2 × 10−5Pa · s, cp = 1000J/kg · K and

kf = 0.01W/m ·K. These values were chosen for having the resulting Prandtl number equal to 2. These

properties were used throughout the work of this Thesis for almost every simulation, except in Section

4.3 as the influence of the Prandtl is studied.

Mesh No. Base Size (mm) Prism Layer Size (mm) No. cells (×105)

1 0.60 0 1999

2 0.40 0 8658

3 0.20 0 34965

4 0.15 0 59162

5 0.15 0.1 76382

6 0.1 0.05 210411

Table 3.1: Generated meshes for the grid independence study

In order to evaluate whether convergence is attained the Darcy friction factor, and the Nusselt number

based on the hydraulic diameter, were quantities calculated for each mesh. The results calculated for

Rep,Dh
= 100 are shown on Figure 3.3.
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Figure 3.3: Grid convergence for Rep,Dh
= 100 (Gyroid, φ = 100%).
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It can be concluded that there is no significant advantage in refining the mesh 5 further. The differ-

ence between mesh 5 and 6, regarding Nusselt number based on the hydraulic diameter, is 2.08% and

regarding the Darcy friction factor of 0.51%. These differences are small compared to the computational

effort difference from mesh 5 to 6, and for that reason, the mesh 5 is used throughout all work.

The validity of the model can be proven by comparing the present work results against literature

values for similar geometries in terms of pressure drop and heat transfer. For that, 2D simulations of

a parallel flat plate heat exchanger were performed. On the top and bottom walls, constant wall tem-

perature is imposed. The flow was assumed to be fully developed in order to obtain the fully developed

pressure drop along the channel and heat flux through the walls.

Figure 3.4: Scheme of the 2D validation model.

In Figure 3.5(a), it is shown the evolution of the friction factor with Re, and the results obtained are

similar in relation to the theoretical curve described by f = 96/Re. For Nusselt number, the results are

compared with the values referred in literature by Shah and London [39], and obtained considering the

temperature mass flow averaged Tm. The results of the simulations compare very well with the theoreti-

cal values, particularly to Pep,Dh
> 30, when the NuDh

tends towards a constant value of 7.54. As seen

in Figure 3.5(b) to Pep,Dh
< 30, the effects of axial conduction along the fluid become relevant, and the

difference between the results in present work and the literature is a litter higher, but the difference is

not significant for this work.
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Figure 3.5: Results of fully developed flow in parallel flat plates with constant wall temperature (Pr = 2).

Since the agreement is satisfactory, the model assumptions hold, and the discretization errors are

low enough for the intended analysis.
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Chapter 4

Results

This chapter presents the achieved results and their discussion. First, analyzing the REV validity for

the calculation of the macroscopic parameters. Permeability coefficients are obtained, followed by the

study of the transition from steady to unsteady flow to get the critical point and zone of transition and

their relation with the porosity. Thermal parameter correlations for the geometries are also obtained

in this work for the steady-laminar regime. Last, the thermal performance in the unsteady regime is

compared with the steady regime and the final analyses are to compare the energy trade-off between

the heat exchanged (heat that cold fluid gets) and the pump power required to move the fluid across the

geometry (pressure drop).

(a) Cubic REV (b) Domain of study

Figure 4.1: Flat plate.

To be compared with the TPMSs geometries analyzed in this work, a plate heat exchanger with a

rectangular cross-section is taken because it is widely used in industrial processes [59]. The case test

performed is an internal flow compacted with flat plates (top and bottom) with a cubic REV similar to the

TPMSs analyzed in this work. In Figure 4.1(a), the cold flow direction is represented by the arrows, the

top and bottom wall have both a boundary condition of constant wall temperature, and in Figure (b) the

domain of the fluid simulated is represented.

The TPMSs chosen to be analyzed in this work are the Schoen-Gyroid (G) and Schwartz-D (SD).

For the G surface, the effect of the porosity and the Prandtl number are analyzed in more detail, and for

that reason, multiple porosities for the G surface are examined. In Figures 4.2, and 4.3, we can visualize

that the simulation is only made for half the representative volume, i.e., for the cold fluid only.
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(a) Cubic REV (b) Domain of study

Figure 4.2: Schoen-Gyroid.

(a) Cubic REV (b) Domain of study

Figure 4.3: Schwartz-D.

In Figure 4.4, porosity φ, and specific surface area asf , as function of the wall thickness dimen-

sionless with the length of the REV (t/L) is shown for the different surfaces. The parallel flat plate

REV porosity and specific surface area have an exact function. For the SD and G surface, the results

obtained for different geometries are fitted with a first-degree polynomial function for the porosity and

second-degree for the specific surface area.
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Figure 4.4: Porosity φ, and Specific surface area asf , function of the wall thickness.
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Looking at Figure 4.4(a) we can see that for the same porosity, the wall thickness is different depend-

ing on the type of surfaces, being lower for Schwartz-D compared to Gyroid and the flat plate. Removing

the value of the dimensionless thickness (t/L), for the same porosity, obtained for each surface and

analyzing Figure 4.4(b), we can see that the SD surface has a bigger specific surface area and for the

same porosity this difference is still greater compared to the specific surface area of G surface because

the thickness is smaller (smaller value on the x axis). We can conclude that SD geometry has the largest

contact area between the fluid and the wall for the same porosity or the same wall thickness.

Table 4.1 summarizes the most important properties of the analyzed geometries:

G100 G95 G90 G80 G70 G60 SD95 SD60 Plate

φ 1.00 0.95 0.91 0.81 0.71 0.61 0.94 0.59 1.00

Vf [mm3] 172 162 155 138 120 103 162 101 172

Aw [mm2] 151.0 151.2 150.8 148.9 145.4 140.4 187.3 172.6 98.0

asf [m−1] 888.2 889.5 887.2 885.9 855.0 825.8 1092.1 1006.4 571.4

Dh [mm] 4.50 4.27 4.10 3.71 3.31 2.94 3.45 2.34 7.00

Ai [mm2] 24.5 23.3 22.5 20.5 18.3 16.1 21.7 12.3 24.5

Aavg [mm2] 24.5 23.1 21.8 19.7 16.9 14.5 23.0 14.4 24.5

Table 4.1: Geometric properties of the analysed geometries (e.g. G80 corresponds to the Gyroid with a
porosity of 80%).

4.1 Representative Elementary Volume

For a proper study using a macroscopic approach, the choice of the correct averaging volume is essen-

tial, as mentioned in section 2.1. A relevant question is whether with the choice of a periodic unit cell

for the REV, the results obtained for macroscopic parameters, such as NuL, are within an acceptable

range of error. To evaluate this is necessary to analyze if the parameters are independent of the size

and location adopted to the average volume.

In this section, the Péclet number definition used is with Darcian velocity uDa (before the entry in

the porous media) and with the length of the periodic structure L, because the value is the same, for

different geometries, for a given mass flow rate. The definition is the following:

PeDa,L = ReDa,LPr =
ṁL

ρADaα
(4.1)

4.1.1 Location

Following the work of Teruel and Dı́az [60], simulations for different locations of the averaging volume

are carried out. They concluded that special care should be taken to compute parameters, mainly for

low Péclet.

Different positions for the volume inlet were chosen along the x-axis as seen in Figure 4.5, giving

25



different elementary volume shapes and a different inlet surface (Figure 4.6). The distance covered

along the x-axis corresponds to the length of the periodic structure to catch the multiple possible formats

for the REV and the fluctuations in the macroscopic parameters. For each different inlet position, a

simulation was performed.

It was found that the cross-sectional area of the TPMSs for the upper limit of φ = 100% is constant,

so the area average axial velocity um (equation 4.2) is constant for every given x. For a smaller porosity,

the area of the cross-section along the REV is not constant. The G60 geometry has a difference of

approximately 8% between the maximum and minimum value in relation to the average area Aavg, and

um also changes in the same proportionality because the mass flow rate is constant and ṁ = ρumAc.

um =

∫
Ac
ρu(y, z)dAc

ρAc
(4.2)

Figure 4.5: Movement of the REV along x-axis.

For fully developed hydrodynamic conditions, the change in the location of the periodic structure,

doesn’t change the dynamics of the flow. The flow pattern is independent of the chosen location for the

entry of the periodic structure. Therefore for the equivalent cross-section, in a different REV (different

simulation), for the same Pe, the velocity profile and magnitude is similar, as seen in the Figure 4.7.

The volume average of the interstitial velocity is equal for all periodic structures of the same geom-

etry, both for the magnitude 〈U〉, and for axial direction. Due to the similarity of the flow, the pressure

drop also does not depend on the position chosen for the REV. We can conclude that the location of the

REV is independent for the hydrodynamic parameters like the pressure drop.

Figures 4.8 and 4.9 shows the NuL as a function of each REV inlet position (note that the abscissa

corresponds to a non-dimensional length x∗ = x/L). The dashed horizontal lines represent the cal-

culated values of the NuL,avg and NuL,est. Former is the mean of the fitting function, defined as the

average value of the function over its domain (equation 4.3), and the latter will be discussed later in the

Section 4.1.3.

NuL,avg =

∫ L
0
NuL(x∗)dx∗

L
(4.3)

Studying Figures 4.8(a) and 4.9(a), we can see that the variations in the parameters tend to decrease
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(a) G Inlet at x/L = 0.17 (b) G Inlet at x/L = 0.42 (c) G Inlet at x/L = 0.75

(d) SD Inlet at x/L = 0.17 (e) SD Inlet at x/L = 0.42 (f) SD Inlet at x/L = 0.75

Figure 4.6: Different locations for the Gyroid and Schwartz-D surface REV.

Figure 4.7: Same cross-section for different Gyroid REV locations.

with the increase of the Péclet, validating the results obtained by Teruel and Dı́az [60] but for a different

porous media geometry. For low Péclet numbers, the fluctuations in the parameters are higher, and

for that reason, a single REV simulation can give results less approximate to the real value. In Section

4.1.3, a method for obtaining a more meaningful value is presented. Figure 4.8(b) and 4.9(b) compares

the same surface with different porosities. For each one, the Péclet is the same, i.e., the forced mass

flow rate is equal for each Figure. The former compares the G100 with the G60 geometry, and we can

observe that for the G surface, the fluctuations are approximately equivalent for the same imposed mass

flow rate, not depending on the porosity. For the latter, that compares the SD95 with the SD60 geometry,

special care is needed computing the parameters for the SD surface because lower the porosity, higher

the fluctuations are.

The variation in the thermal parameters can be explained due to the inlet boundary conduction. For

different averaging volume inlet, the conduction in the inlet varies, and, for that reason, the heat transfer
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in the wall boundaries also has to vary because the first law of thermodynamics cannot be infringed.

This will be illustrated in the next section 4.1.3.
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Figure 4.8: NuL for each different Gyroid surface REV (Pr = 2.0).
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Figure 4.9: NuL for each different Schwartz-D surface REV (Pr = 2.0).

4.1.2 Size

The REV size must fulfill certain characteristics in order to represent the pore-scale flow. However, when

dealing with periodic structures, the case is slightly different, given the periodicity of the structure. When

dealing with these structures, one only has to guarantee that the simulation domain repeats itself and,

in doing so, forms the complete structure. In this section, we will analyze whether the increase in the

size of the REV is a solution to obtain better values of the parameters and fewer fluctuations, to have a
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periodic structure independent of the location.

To study that, a simulation of a REV with two periodic structures (length of 2L), and with the inlet at

x∗ = 0, is performed. In Figure 4.10 the x-axis represents a cross-section for the same simulation,and

note that in the previous section represented the inlet for different REV simulations. The points of

the average temperature Tm, for each cross-sectional area, are calculated by 4.4. The temperature

difference for each section θ = Tw − Tm, divided by the maximum possible temperature difference

θi = Tw − Ti, is a dimensionless form of the temperature average and may be defined as 4.5 [13].

Tm =

∫
Ac
ρucpTdAc

ṁcp
(4.4)

θ∗ =
Tw − Tm
Tw − Ti

(4.5)

When analyzing Figure 4.10, we can see that increasing the size of the REV (two periodic structures

in a row) is not one solution to find more accurate values of the parameters. The value obtained for

NuL is approximately the same as for the simulation performed for the geometry with only one cell. The

average temperature at the outlet of the first periodic cell can explain this result because it is already

very close to the wall temperature. As a result, the heat transferred by the wall in the second periodic

cell is almost zero and no longer has an impact on the convection coefficient h of the whole structure.
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Figure 4.10: Cross-section temperature average (Gyroid, φ = 100%).

Another possibility could be to increase the temperature difference between the wall and the inlet

flow. As we can see in Figure 4.10, the dimensionless temperature difference profiles are coincident,

and for this reason, the Nusselt value is the same regardless of the temperature difference, as expected.

With this result, we can conclude that the solution to obtain more approximate values for the parameters

also does not involve increasing the temperature difference.
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4.1.3 Procedure to compute low Péclet parameters

As mentioned in the previous Section 4.1.1, the variation of macroscopic parameters is only relevant for a

low Péclet number. For this range of flows, the simulation of a single REV is not sufficient to compute and

obtain the most accurate results for the thermal macroscopic parameters. In this section, a procedure will

be presented with a less computational cost than doing the multiple simulations throughout the domain

for different REV location.

In Figure 4.11 (results obtained for the G100 geometry), we can see that there is a relationship

between the magnitude of the velocity at the REV inlet and the result obtained for NuL.
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Figure 4.11: Correlation between velocity magnitude inlet and NuL (Gyroid, φ = 100%).

The method proposed (Figure 4.12) start with the creation of one periodic unit cell in any location

of the porous media and performing a fluid flow simulation. This first simulation is needed to obtain

the average velocity magnitude data along the REV cross-sections. Process the data to get the cross-

section locations of the maximum (x1) and minimum (x2) average velocity magnitude. This locations are

the same independently of the location of the periodic cell volume due to the flow similarity, as explained

in the previous Section 4.1.1. After that, perform two more simulations, each one with the REV inlet

location in the cross-sections obtained in the first simulation. Take the value of the NuL for each one

and use the definition of equation 4.6 to calculate the NuL,est. The method described consists in making

a total maximum of three simulations and has a much lower computational cost in contrast to the multiple

simulations needed to get the NuL,avg.

NuL,est =
NuL(Umax) +NuL(Umin)

2
(4.6)

The following Table 4.2 summarizes the values of the maximum deviation D, between the value of the

maximum Nusselt and the average Nusselt estimated with the two distinct definitions. More significant

differences are found for low porosities and low Pe numbers. As we can see in the table, the error of

the estimated Nusselt, in comparison with the NuL,avg is not very pronounced. Hence, the procedure

proposed in this section is reasonable for the computation of the parameters. We can also see that this

difference tends to decrease with the increase of Péclet, as expected. Comparing the G with SD surface,
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Figure 4.12: Scheme of the method proposed to compute NuL for a low Péclet number.

we can also see that for the same Péclet, the deviation is higher for the SD, that is, the fluctuations are

higher for the SD surface.

To calculate NuL,avg the simulations needed was always higher than 10, and the proposed method

in this section only needs three simulations. Computational cost and time are greatly reduced with the

method proposed in this section, as we can see in the last row of Table 4.2, and the values are calculated

with 1− 3/N .

Geometry G100 G60 SD95 SD60

PeDa,L 15 80 125 15 80 20 115 285 20

NuL,avg 13.6 14.5 16.9 17.1 20.1 20.2 23.9 29.5 25.4

NuL,est 13.7 14.5 16.9 16.6 19.9 19.3 23.6 29.5 23.2

Davg = |NuL,avg−NuL,max

NuL,avg
| 0.12 0.04 0.02 0.08 0.03 0.21 0.06 0.03 0.31

Dest = |NuL,est−NuL,max

NuL,est
| 0.11 0.04 0.02 0.11 0.04 0.27 0.07 0.03 0.44

Errorest = |NuL,est−NuL,avg

NuL,avg
| (%) 0.8 ≈ 0 ≈ 0 2.7 0.9 4.7 1.33 ≈ 0 8.8

N = Number of simulations 29 10 13 23 15 23 23 13 21

Computational reduction (%) 90 70 77 87 80 87 87 77 86

Table 4.2: Results obtained for the Nusselt average and estimate, deviation, error and computational
reduction.
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4.2 Steady to unsteady flow transition

Thus far, in this Thesis, the transport and thermal properties of the porous media were obtained, as-

suming steady fluid flow with constant thermophysical properties. This section is divided into two parts.

First, we will obtain the transition points for the G surface, followed by the calculation of the viscous and

inertial permeability coefficients to obtain the Forchheimer number, Fo.

The transition from steady to unsteady flow does not have a well-defined point so that we will define

in this work two distinct transition points [35]. The transition points are obtained in more detail for

the G surface. The principal criterion to define these points is based on the residuals obtained in the

simulations performed. Figure 4.13 represent the three different residuals behavior obtained to study

the transition points. The first behavior (a) are achieved with the steady solver, the second (b) and third

(c) with the unsteady solver.
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Figure 4.13: Three types of Residuals.

The first critical transition point is defined by running the steady solver, increasing the mass flow rate

ṁ (Reynolds), until reaching a point where the residues diverge Retr,1. For the different porosities of

the G surface, the values of the tortuosity, τ , and Retr,1 with four different definitions, are represented

in Figure 4.14. The various definitions for Re are shown to demonstrate that special care is needed

when comparing different porosities of a TPMS. As we can see in the Figure 4.14(a), the behavior of

the Re value for transition point as a function of porosity depends on the definition used. What we can

conclude is that when the porosity is higher, the critical point of transition occurs to higher flow velocity

and has a broader range of the steady-laminar region. This effect can be explained due to the decrease

in tortuosity for the same Reynolds. As seen in the previous Section 2.1.3, the transition point using

the definition of Rep,L is approximately (due to errors in the numerical simulation) constant because

depends only on the fluid flow inside the pore.

The second definition for the transition point Retr,2 is established by running the solution with the

unsteady solver from the point where the steady solver simulation diverges, checking to what extent with

the unsteady solver the simulation continues to converge as seen in Figure 4.13(c). The behavior of the

τ and Retr,2 is very similar to the first transition point defined in this work, and the transition location is

postponed to higher flow velocity (higher Reynolds) and higher tortuosity, as we can see in the Figure

4.14(b).
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Tortuosity might be described by the ratio between the actual streamline and the straight line distance

through the medium in the direction of the flow. To use this definition one would have to trace the particle

trajectories and compare them with the straight line distance. An alternative was proposed which had

into account the variables already calculated [61]. The equation is:

τ =
〈U〉
〈u〉

, (4.7)
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Figure 4.14: Transition location for the Gyroid surface depending on the porosity.

The next subsection is to verify and validate the results obtained for the transition points. Following

the work of Eric et al. [62], we will use the definition of the number of Forchheimer 4.8, and the ratio

between the inertial and the total pressure losses 4.9, to identify the transition zone and check if the

methods used earlier in this section coincide with the results obtained by Eric et al.

Fo =
ρuDak1
µk2

, (4.8)

pinertial
ptotal

=
Fo

1 + Fo
, (4.9)

4.2.1 Viscous and Inertial Permeability Coefficients

When a high-velocity flow is present in the porous media, pressure drop follows the Darcy-Forchheimmer

equation, as seen in Section 2.1.3. For this equation to be meaningful and illustrative, accurate results

of the Darcy permeability, k1, and the inertial coefficient, k2, must be obtained either by estimates given

by correlations of geometric parameters or by data obtained from simulations. In this work, the latter is

performed, and the simulation data will have to be fitted to the Darcy and Darcy-Forchheimmer equation.

The first step was to simulate Darcy flow for ReDh < 1, and the pressure gradient was computed,

such that the inertial contribution is negligible. To compute the Darcy permeability coefficient, k1, the
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Darcy equation 2.26 is rearranged - dividing by ρu2DaL - and a new dimensionalized pressure gradient

is obtained given by equation 4.10. The equation is fitted with a linear polynomial, 1/ReDa,L being

represented in the x-axis, for all geometries studied in this work, as seen in Figure 4.15. Analyzing the

results, we can see that the pressure drop for the creeping flow is higher for the Schwartz-D surface in

comparison with the Gyroid surface and the parallel flat plate.

(
dp

dx

)∗
=

1

k1

1

ReDa,L
, (4.10)
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Figure 4.15: Dimensionless Darcy equation fitting.

To compute the inertial permeability coefficient, k2, the data obtained for pressure gradient in high-

velocity flow ReDh > 1, is also fitted with a linear polynomial (Figure 4.16). Rearranging the Darcy-

Forchheimer equation, the coefficient is calculated with 4.11. We can see that the k2 coefficient is given

by the intersection of the fitting with the y-axis. Comparing the pressure gradients of G and SD surfaces

with the respective counterparts, the lower the porosity of the surfaces, the higher the pressure gradient

will be. By Figure 4.16, we can also note that for a particular Re value, the pressure drop is higher in the

G surface instead of the SD.

(
dp

dx

)∗
=

1

k1

1

ReDa,L
+

1

k2

1

L
, (4.11)

The use of Fo to determine the validity of each permeability equation implies that both constants k1

and k2 must be available for analysis.

A substantial volume of permeability data based on Forchheimer’s equation for highly porous media

has become available in the literature and a correlation between both permeability parameters could link

porous media of totally different structural features [29]. The equation is given by:

k2 = exp

(
−1.71588

k0.080931

)
, (4.12)

In Figure 4.17, a comparison between permeability data obtained for TPMSs (Gyroid and Schwartz-D)
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Figure 4.16: Dimensionless Darcy-Forchheimer equation fitting.
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Figure 4.17: Comparison between permeability data obtained for TPMSs (Gyroid and Schwartz-D) and
literature correlation for porous material. Data from Table 4.3

.

and literature correlation for porous materials is presented. We can see that the values obtained in this

work for the permeability coefficients are validated with the literature correlation.

In the following Table 4.3, results of the permeability coefficients for all geometries studied in this work

are presented:

G100 G95 G90 G80 G70 G60 SD95 SD60 Plate

k1 [×10−7m2] 2.23 1.91 1.68 1.26 0.87 0.59 1.18 0.33 7.61

k2 [×10−3m] 4.38 3.64 3.20 2.33 1.59 0.84 4.96 1.23 656.5

Table 4.3: Permeability coefficients results.
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Eric et al. [62] concluded that the transition point for unsteady flow occurs when the inertial losses

correspond to approximately 60% of the total losses (Fo/(1+Fo) = 0.6). In Figure 4.18 the data obtained

for two different geometries of the Gyroid are represented - G100 and G60. All considered simulations

are indicated on a curve that shows the variation in the ratio between the inertial and the total pressure

drop as a function of the Forchheimer number. The green dots represent the results obtained with the

steady solver, that is, the laminar-steady regime. The blue dots represent the points for simulations

with the unsteady solver, but that converge to steady. We term this the transition zone. The red dots

already represent points in the unsteady regime. As we can see, the transition zone is around the point

where the inertial losses correspond to 60% of the total losses, thus validating the results obtained in

the previous Section.

Figure 4.18: Schoen-Gyroid. Variation of the ratio between the inertial and the total pressure drop
identifying the steady, transition and unsteady regime (φ = 100% and φ = 60%).

In Figure 4.19 the data obtained for two different geometries of the Schwartz-D are represented -

SD95 and SD60. The transition zone, like the G surface, is around the point where the inertial losses

correspond to 60% of the total losses. For a higher porosity, the transition zone begins for a lower Fo.

Due to this reason, the SD has a higher range of values in the transition zone in comparison with the G

surface.
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Figure 4.19: Schwartz-D. Variation of the ratio between the inertial and the total pressure drop identifying
the steady, transition and unsteady regime (φ = 95% and φ = 60%).

4.3 Correlations to Steady Laminar regime

In this section, a correlation for the Gyroid surface, for the laminar steady regime, is computed and

compared with other correlations described in the literature for porous media reported in Section 2.1.3

by the equations 2.28 and 2.29. Simulations were performed for various Prandtl numbers, and among

them the Pr of water and air. The properties are described in Table 4.4.

Prandtl
Density Viscosity Conductivity Specific heat Thermal diffusivity

ρ , (kg/m3) µ, (Pa · s) κ, (W/m ·K) cp, (J/kg ·K) α, (m2/s)

7 1000.0 1e-3 0.597 4180 1.40e-7

2 1.0 2e-5 0.01 1000 1.00e-5

0.7 1.0 2e-5 0.0286 1000 2.86e-5

Table 4.4: Prandtl number and fluid properties.

Comparison between correlations in literature and results obtained for the G60 and SD60 geometry,

both with a Pr = 2 are shown in Figure 4.20. Analysing the results obtained, we can conclude that for

Re > 20 the behavior of the correlations are in line with the obtained results for the Nusselt, and the

expression of Kuawahara et al. has a minor difference from the values obtained in this work. But, our

study based multiple numerical simulations suggests that a separate correlation should be established

for correlating the data obtained.

The correlations mentioned above are obtained with the number of Rep,Dh
as a variable. In Section
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Figure 4.20: Comparison between correlations in literature and results obtained (φ = 60%, P r = 2).

4.2 we saw that the transition point varies for different porosities with this definition of the number of

Re. Using the characteristic length of the periodic cell L, and the interstitial velocity < u > to define the

number of Re, the transition point is practically constant as we can analyze in Figure 4.14. Due to this

factor, the correlation that is obtained for the Gyroid in this work takes the form of Equation 4.13. The

scope of this section is obtain the coefficients (a, b, m, n) that best fit the results.

NuL = a+ bRemp,LPr
n, (4.13)

In Figure 4.21, the results obtained for various Gyroid surface porosities are shown. Before obtaining

a expression for the coefficients a and b is necessary to work with this results and obtain the coefficients

m and n. Processing and fitting the plots obtained, the achieved values is m = 0.79 and n = 0.36.
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Figure 4.21: Results obtained for the Gyroid surface in the laminar steady regime.
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NuL = a+ bRe0.79p,L Pr
0.36, (4.14)

The next step is to obtain the coefficients a and b. For that, a fitting is done with the form reached

above 4.14, and a value is obtained for the coefficients. This procedure is done for every porosity with a

constant Pr.
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Figure 4.22: Effect of porosity on coefficients a and b (Pr = 2).

The coefficients a and b obtained for different porosities are plotted in Figure 4.22 to investigate the

porosity dependency and obtain expressions for this coefficients. Expressions are reached and pre-

sented in 4.15 and 4.16.

a = 9.89 + 39.62(1− φ)3.91, (4.15)

b = 0.19 + 0.16(1− φ)0.62, (4.16)

In Figure 4.23 the data obtained in the numerical simulation for the multiple Prandtl numbers, and

two different porosities (φ = 100% and φ = 80%) are compared with the correlation obtained in this

work 4.17. It can be seen that the expression agree well for a region of Rep,L > 30 in the laminar

steady regime. Can be concluded that the correlation achieved in the current work is better than those

of Gamrat et al. [36] and Kuwahara et al. [28] to describe the Nusselt for a porous media with a Gyroid

structure.

Final step is to combine the expressions and obtain the correlation with theRe, Pr and φ as variables.

A universal correlation for the Nusselt number, which agrees well with available experimental data, has

been established using the results obtained for a range of porosity, Prandtl and Reynolds numbers. The

correlation obtained for the Gyroid surface, in the laminar steady regime, for a region 30 < Rep,L < 150,

porosities 0.6 < φ < 1.0, and 0.7 < Pr < 7 is the following:
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Figure 4.23: Correlation and results obtained comparison.

NuL = 9.89 + 39.62(1− φ)3.91 + (0.19 + 0.16(1− φ)0.62)Re0.79p,L Pr
0.36; (4.17)

4.4 Heat exchanger thermal performance

In this Section, obtained results for the main parameters for the application of these geometries to heat

exchangers are presented and analyzed. The approach followed is similar to the work presented by

Passos [4]. The results presented were extended to the laminar-unsteady regime.

For the analysis of heat transfer in an internal flow, the principal parameter to be calculated is the

Nu based on the hydraulic diameter as a function of Rep,Dh - Figure 4.24. One of the conditions of that

analysis is that for the same surface and with a similar mass flow rate, but varying the porosity, both

the hydraulic diameter and the interstitial velocity change, which leads us to conclude that the basis for

comparison may not be the most appropriate [63]. To overcome this, in Figure 4.25, the Nu based on

the length of the REV as a function of ReDa,L is shown. For the same mass flow rate and surface, Re is

the same, regardless of the porosity of the geometry, which allows obtaining a better comparison.

In Figure 4.24, from Re = 80− 200 the G60 geometry overcomes the counterpart G100 geometry in

the value of the NuDh
. This behavior can be explained due to the transition from steady to unsteady flow

starting earlier for the lower porosity, and the G100 geometry is still in the steady regime when the G60

is already in an unsteady flow regime. For the G and SD surface, when comparing the figures below,

we can see that for higher porosities the Nu is higher with the definition of hydraulic diameter and lower

with the characteristic length L, demonstrating that the performance comparison between surfaces and

porosities depends on the definition used, and special care is needed as mentioned earlier. Figure 4.26

shows the variation of the heat transfer coefficient.
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Figure 4.24: NuDh vs Rep,Dh.
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Figure 4.25: NuL vs ReDa,L.
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Figure 4.26: h vs Rep,Dh.
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Another way to make comparisons and that better reflects the convection in each geometry is Figure

4.27. Presents the energy density exchanged across the REV, i.e., heat transfer across the wall per

volume.
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Figure 4.27: qw/L3 vs ṁ/L2.

Analyzing Figure 4.27 and comparing different surfaces with the same porosity, the G60 with the

SD60 geometry. For the steady regime, the SD surface has a higher energy transfer than the G surface.

The transition for the unsteady regime happens for a lower mass flow rate in the G60 geometry and

for that reason, the energy exchanged overtakes the SD60 geometry. For a higher mass flow rate,

both geometries are in the unsteady regime and the energy exchanged is highest again for the SD60

geometry. The TPMSs have superior convection properties to the full extent of the laminar steady

regime, validating the results obtained by Passos [4]. After the transition to the unsteady laminar regime,

the increase in convection properties of the TPMSs is even larger when compared with the flat plate that

holds the laminar regime up to a Re ≈ 2000 where the convection coefficient is constant. This means

that the difference will be even larger in the turbulent flow regime.

To evaluate the efficiency of the heat transfer across the wall, the effectiveness parameter was cal-

culated and presented in the next Figure 4.28. All of the TPMSs analysed have superior effectiveness

in the unsteady regime compared to the parallel flat plate. The effectiveness is higher when the porosity

is lower and tends to a constant value when reaching the unsteady flow.

The number of transfer units (NTU) is represented in the Figure 4.29 and is a combination of heat

transfer coefficient, transfer area, fluid flow rate and heat capacity. It summarizes these dimensional

parameters into one dimensionless parameter. The performance becomes a monotone function of this

dimensionless parameter. Geometric and design parameters can be estimated with these dimensionless

correlation.

With known NTU values, effectiveness can be found with a ε − NTU expression. In the previous

Figures results obtained for the heat exchanger parameters were shown. The availability of ε − NTU

data is very useful for predicting heat exchanger performance for more complex configurations with
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Figure 4.28: ε vs Rep,Dh.

many different flow arrangements. This kind of heat exchanger can be approximate by the analytical

expression 2.42. In the next Figure an analysis of the elaboration of the ε−NTU graphs obtained with

the present simulations are presented.
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Figure 4.29: NTU vs Rep,Dh.

For Figure 4.30 the solid gray curve correspond to the heat exchanger effectiveness analytical ex-

pression for a flow with constant wall temperature as explained in Section 2.3. We can see that the

results obtained for the TPMS surfaces have a equal behavior of the analytical expression, that was the

expected result. One important fact is illustrated: the use of a specific theoretical relation can introduce

errors into different heat exchangers configurations.
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In Figure 4.31 an optimization study for the maximization of the effectiveness and heat transfer per

volume is presented. For a proper study, the inverse of energy density exchanged is shown in the x-axis

(lower x value for a higher compatibility per heat transfer) and 1 − ε plotted in the y-axis (lower y value

for higher effectiveness). Analyzing the Figure, we can conclude that the points in the transition zone

(solver unsteady) are a good choice because the line slope is accentuated. This means that a small

increase in the energy density, the increase in the effectiveness is higher than in other zones for the

same increase in the energy density.
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Figure 4.31: 1− ε vs L3/qw.
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4.4.1 Pareto Efficiency

The final study is to compare the energy trade-off between the heat exchanged (what one gets) and the

pump power required to move the fluid across (what one pays).

In Figure 4.32 the ratio between the heat exchanged and the pump power (pressure drop) is shown.

The parallel flat plate has the best performance than the TPMS for the steady and unsteady regime. This

can be explained due to a minimal tortuosity in the flat plate that greatly influences the pressure drop.

Comparing the Gyroid with the Schwartz-D surface, the former has a better ratio (trade-off) for the same

porosity. The decrease in the wall thickness (higher porosity) has a higher wall surface while decreasing

the pressure drop, resulting in a higher ratio for lower porosities. These results are in agreement with

Passos [4].
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Figure 4.32: qw/(∆PV̇ ) vs Rep,Dh.

A multi-objective optimization study (Pareto efficiency) is carried out to minimize the volume per heat

transferred across the wall while minimizing pumping power.

Analyzing Figure 4.33, the parallel flat-plate has a better ratio between volume and heat exchanged

at lower pumping power. With increasing pumping power the TPMS surpasses the flat plate performance

and is the best solution when a high transfer rate is needed. The SD surface is the best choice for the

steady regime allowing for greater heat transfer with lower space, and this conclusion is in agreement

with the work of Passos and Femmer et al. [4, 15]. The unsteady regime is the main scope of this work

and we can see that the conclusion is distinct from the steady regime because the G surface takes up the

SD surface, holding both a very comparable ratio in this regime. For the equivalent pumping power and

space used, a higher porosity has a higher energy transfer, besides the region when the G60 geometry

has already transited for the unsteady regime and the G100 geometry is still in the steady regime. For

this region, a lower porosity can have a better ratio.

Another interesting analysis to do is the comparison between multiple heat exchanger working fluids,

i.e. between various Prandtl numbers. In Figure 4.34, the results achieved for the G100 geometry with

Pr = 7.0 (water), and Pr = 0.7 (air) are displayed. An important conclusion is that for the water, one
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Figure 4.33: L3/qw vs (∆PV̇ )/L3 (Pr = 2).
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Figure 4.34: L3/qw vs (∆PV̇ )/L3 (Gyroid, φ = 100%).

of the most used working fluids in the industry of heat exchangers, the energy exchanged for the same

pumping power is even greater in contrast with the flat plate. These results confirm once more that the

use of TPMS for novel heat exchangers geometries is very promising.

From the results presented here in this Section, the SD surface presents itself as the best geometry

for a laminar steady flow. To manufacture a heat exchanger, for a laminar unsteady flow ,the choice can

be between the two TPMS.
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Chapter 5

Conclusions

Modeling of Triply Periodic Minimal Surfaces (Schwartz-D and Schoen-Gyroid) within a representative

elementary volume with periodic boundaries was numerically investigated. Internal flow of pore-scale is

considered throughout all the work. Multiple unit cubic cells were modeled on different positions, giving

different structures for the representative elementary volume, in order to access the influence of the

axial conduction in low velocity flows. For the same surface, different geometries are modeled for having

different values of porosity and concluded about the influence of the geometric parameters on fluid flow.

The process of geometry creation was performed and subsequently imported to implement the nu-

merical simulation and subsequent grid dependence and validation studies. The finite volume method

code is adequate to solve pore-scale flow details using polyhedral cells, and the software Star-CCM+

is used. The concept of volume averaging ensured meaningful computational values and the computed

parameters needed to study the pressure drop and heat transfer.

Transition to the laminar unsteady regime has studied and validated with the Forchheimer ratio be-

tween the inertial and total forces acting on the fluid inside the porous media. At lower porosities, the

transition occurs at a lower mass flow rate inlet.

For the Nusselt number based on the characteristic length, a correlation is developed based on the

porosity and Prandtl number as a function of the Reynolds. The present correlation bettered several

weaknesses of the existing correlations for porous media, being more accurate for the Schoen-Gyroid

surface.

An analysis of heat transfer in the laminar unsteady regime was made for the two different TPMS

geometries and porosities. The heat transfer across the wall, thermal effectiveness, and pumping power

was obtained and compared with the typical case of the parallel flat plate heat exchanger.

5.1 Achievements

The full process of geometry creation to numerical simulation was performed, and subsequent grid

dependence and validation studies were completed to ensure proper discretization and model assump-

tions. An extensive study of the representative elementary volume position influence is performed. A
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method with much less computational time to obtain the heat transfer parameters for low Péclet number

is proposed. Transition points to laminar unsteady regime has obtained for the Schoen-Gyroid and re-

lated with the tortuosity and different Reynolds definitions. A correlation is developed and compared to

literature correlations for the Schoen-Gyroid, with good results for the Nusselt number. Finally, another

extensive study of the performance in the laminar Reynolds range is performed for different porosities.

5.2 Future Work

A few concepts for future work related to the topic presented in this thesis are presented:

• Extension of the data obtained in this work to the turbulent regime.

• Validation of the computational results with experimental data.

• Correlation extension to the laminar unsteady and turbulent regime using parameters like Strouhal

number and kinetic turbulent energy.

• Compare the thermal performance of the surfaces analysed in this work with representative ele-

mentary volumes filled with random metal foams.

• Analyze the flow transition and heat transfer performance in others TPMSs.
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